Cool Find The De Of A Family Of Circles With Center On The X-Axis. Hence The Required De Is References

Hence, The Required De Is O Yy + (2Y')2 +1 = 0 O Yy + (Y')?


Hence, the required de is 2yy + (y)2 +1 = 0 yy + (2y)2 +1 = 0 yy + (y)? Let c (xc, 0) be the center as the. Here (h, k) is fixed and r is a varying parameter.

That Means If This Is X, This Is Y.


Correct option is b) general equation of a circle can be given as x 2+y 2+2gx+2fy+c=0 since it is given that this circle passes through origin and centre lies on x− axis ∴ center of circle is. Hence, the required differential equation is. Hence, the required de is oy + (+1=0 w 2yy + (7)?

Differential Equation, De Calculus Family Of Curves.


In this i determined the differential equation of the family of circles, which centers on the y axis so center on y axis. About press copyright contact us creators advertise developers terms privacy policy & safety how youtube works test new features press copyright contact us creators. To find the ot of the de of the family of circles with center at the origin q:

Where (H, K) Is Fixed And The Only Parameter That Is Varying Is R.


This is the equation of the family of concentric circles. Expert answer transcribed image text: When family of circles have a fixed center.

Thank You To Those Who Will Help )) Prove It.


The fixation of the radius will give a. The family of circles passing through the origin is given by ( x − r cos θ) 2 + ( y − r sin θ) 2 = r 2 differentiating once, we get 2 ( ( x − r cos θ) + ( y − r sin θ) y ′) = 0 differentiating again, we get.